The effect of water on gas–particle partitioning of secondary organic aerosol. Part I: a-pinene/ozone system
نویسندگان
چکیده
The effect of relative humidity (RH) on aerosol formation by the semi-volatile oxidation products of the a-pinene/O3 system has been comprehensively studied. Experiments were performed in the presence of ammonium sulfate (aqueous, dry), ammonium bisulfate seed (aqueous, dry), and aqueous calcium chloride seed aerosols to ascertain their effect on the partitioning of the oxidation products. The yield of organic aerosol varies little with RH, and is not affected by the presence of dry inorganic salt aerosols. Aqueous salt aerosols reduce the yield of organic aerosol compared to that under seed-free or dry seed conditions. The degree of reduction is electrolyte dependent, with aqueous ammonium sulfate leading to the largest reduction and aqueous calcium chloride the smallest. Hygroscopic growth of the organic aerosol fromo2% to 85% RH was also monitored, and could be satisfactorily represented as the sum of the individual contributions of the organic and inorganic fractions. The implications of the growth factor measurements for concentration/activity relationships of the condensed phase organic material (assuming a liquid solution) was explored. The formation of the organic aerosol was investigated using a simple two component model, and also one including the 12 product compounds identified in a previous study. The experimental results for o2% and 50% RH (without salt seed aerosols) could be satisfactorily predicted. However, the aqueous salt seed aerosols are predicted to increase the overall yield due to the dissolution of the organic compounds into the water associated with the seed aerosolF the opposite effect to that observed. The implications of two distinct phases existing the aerosol phase were investigated. r 2001 Elsevier Science Ltd. All rights reserved.
منابع مشابه
The effect of water on gas–particle partitioning of secondary organic aerosol: II. m-xylene and 1,3,5-trimethylbenzene photooxidation systems
An investigation of the effect of relative humidity on aerosol formation from m-xylene and 1,3,5-trimethylbenzene photooxidation is reported. Experiments were performed in the presence and absence of ammonium sulfate seed particles (both aqueous and dry) to ascertain the effect of partitioning of oxidation products into a strong electrolytic solution or onto dry crystalline seed particles. In m...
متن کاملOzonolysis of a-pinene at atmospherically relevant concentrations: Temperature dependence of aerosol mass fractions (yields)
[1] Despite a number of smog chamber studies of the a-pinene/O3 system, the effect of temperature on a-pinene secondary organic aerosol (SOA) mass fractions (or yields) remains poorly understood. In this study, the temperature dependence of secondary organic aerosol mass fractions (AMF) during ozonolysis of a-pinene is investigated in a temperature controlled smog chamber. Experiments were perf...
متن کاملDevelopment and Application of Detailed Chemical Mechanisms for the Gas-Phase Oxidation of VOC A contribution to subproject CMD-GPP
Detailed mechanisms have been developed which describe the complete degradation of αand β-pinene. Gas-aerosol absorptive partitioning has been incorporated for 280 oxygenated products, and the mechanism for α-pinene has been used to simulate the time development of ozone, secondary organic aerosol (SOA) and, where applicable, NOX for the conditions of EUPHORE experiments performed at part of th...
متن کاملIs the gas-particle partitioning in alpha-pinene secondary organic aerosol reversible?
[1] This paper discusses the reversibility of gas-particle partitioning in secondary organic aerosol (SOA) formed from a-pinene ozonolysis in a smog chamber. Previously, phase partitioning has been studied quantitatively via SOA production experiments and qualitatively by perturbing temperature and observing particle evaporation. In this work, two methods were used to isothermally dilute the SO...
متن کاملGas-Phase Ozone Oxidation of Monoterpenes: Gaseous and Particulate Products
Atmospheric oxidation of monoterpenes contributes to formation of tropospheric ozone and secondary organic aerosol, but their products are poorly characterized. In this work, we report a series of outdoor smog chamber experiments to investigate both gaseous and particulate products in the ozone oxidation of four monoterpenes: α-pinene, β-pinene, 13-carene, and sabinene. More than ten oxygenated...
متن کامل